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Abstract

We consider the problem of fair division, where a set of m indivisible goods

should be distributed fairly among n agents with combinatorial valuations.

We propose a novel fairness notion, where an agent assesses the fairness of

a bundle by comparing it to a random bundle, in which she gets each good,

independently, with probability 1
n . In this framework, a bundle is considered

q-quantile fair, for q ∈ (0,1], if it is at least as good as the random bundle with

probability at least q.

We show that if a version of the classical Erdős Matching Conjecture is

true, then 1
2e -quantile fairness is universally feasible, in the following sense: for

every n-tuple of monotone valuations, there exists an allocation giving every

agent a bundle which is 1
2e -quantile fair. This is tight up to a factor of 2.

Furthermore, we provide unconditional feasibility results for additive, unit-

demand, and matroid-rank valuations for constant values of q. Finally, we

compare our notion to other fair share notions in the literature, such as the

maximin and proportional share, none of which is universally feasible.
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1 Introduction

Fair division, the problem of allocating resources in a fair manner, has emerged as a

prominent and crucial area of research that has attracted considerable attention in the

literature (see, e.g., the surveys of Thomson [69] and Moulin [57]). This challenging

problem arises in various practical applications, ranging from classical examples like

the division of inherited estates, international border settlements, and the allocation

of public resources and government spending, to more modern applications such as

assigning seats in college courses, allocating computational resources, distributing the

electromagnetic spectrum, and managing airport traffic.

Fair division model. We consider the problem of allocating a set of indivisible

goods [m] = {1, . . . ,m} among n agents. An allocation is a partition of the set of

goods among the agents; it is denoted by S = (S1, ..., Sn), where Si ⊆ [m] denotes the

bundle allocated to agent i ∈ [n], and S1 ⊍S2 ⊍ ...⊍Sn = [m]. Every agent i ∈ [n] has

a valuation function vi ∶ 2[m] → R+ that assigns a real value to every bundle of goods.

The function vi is monotone, namely vi(S′) ≤ vi(S) for all S′ ⊆ S ⊆ [m]. The class of

all monotone valuation functions will be denoted by V .

Considering such valuation functions reflects the following basic premises about

preferences. First, an agent derives utility only from the bundle allocated to her

(no externalities). Second, the goods are desirable (as opposed to undesirable bads),

hence the monotonicity assumption. At this level of generality, we impose no further

restrictions on how different goods interact in the valuation functions; they may be

substitutes or complements or combinations thereof. Later we will also consider some

special classes of valuation functions that have been studied in the literature. The

most important one is that of additive valuations, where the value of a bundle is the

sum of the values of the goods in it, which makes sense when the goods are unrelated.

We assume that the agents have equal rights to the goods. The indivisibility of

the goods is a clear obstacle to achieving ideal fairness. Think, for example, of two

agents vying for a single good. No matter who gets the good, the outcome will be

unfair to the other agent. Some related models overcome this difficulty either by

randomization or by monetary transfers. Our model corresponds to situations where

those tools are not available, due to practical or legal considerations. This has forced

researchers who studied this model to look for fairness goals that are not ideal, yet
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are reasonable and achievable.1 One approach, that we adopt here, is based on the

notion of shares.

The notion of a “share”. Following the terminology of [8], a share τ = τ(vi, n)
is a function that maps a pair (vi, n) to a real value, with the interpretation that an

allocation is fair towards agent i if and only if it gives agent i a bundle of value at least

τ(vi, n), i.e., vi(Si) ≥ τ(vi, n). Note that any share τ is fair in the sense that different

agents with the same valuation function are treated equally (the share depends on

vi, not on i). Note also that the determination of whether a given allocation is fair

towards agent i according to the share τ takes into account only agent i’s valuation,

the bundle she gets, and the number of agents. This is an attractive feature when

agents are unaware of others’ valuations, and it precludes considerations of envy

among agents (which play a role in other approaches to fairness).

Given a share τ and a profile v1, . . . , vn of valuation functions, an allocation S =
(S1, . . . , Sn) is said to be fair if it is fair towards all agents, namely, vi(Si) ≥ τ(vi, n)
for every i ∈ [n]. We say that the share τ is feasible for a given class U ⊆ V of valuation

functions if for every choice of v1, . . . , vn ∈ U there exists a fair allocation S. If this

holds for the class U = V of all monotone valuation functions, we say that the share

τ is universally feasible.

Adopting the notion of a share, a main challenge is to come up with a good

definition of τ(vi, n). It would have to be (a) intuitively convincing so that an agent

with valuation function vi could be persuaded that receiving a value of at least τ(vi, n)
protects her rights within a group of n agents, and (b) universally feasible, or at least

feasible for an interesting large class of valuation functions. There is an inherent

discord between these two requirements: while (a) considers only the valuation of

one agent and ignores the others’ valuations, (b) requires to cope with all possible

profiles of valuations and simultaneously satisfy everyone’s demands. A (universally)

feasible share τ can be thought of as a benchmark indicating, for any given vi and

n, a welfare level τ(vi, n) which can be guaranteed to an agent with valuation vi

regardless of the valuations of the other n − 1 agents.2

The most natural definition of a share is the proportional share τ(vi, n) = vi([m])
n ,

allowing each agent to claim a 1
n fraction of her valuation for the grand bundle. This,

1We briefly survey the literature on this and related models in Subsection 1.2 below.
2Bogomolnaia and Moulin [16] introduced the same notion in a related model of non-atomic fair

division, and called it a fair and feasible guarantee.
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however, is clearly infeasible in our model of indivisible goods. Another prominent

notion of share is the maximin share (MMS) introduced by Budish [19]: it is de-

fined as τ(vi, n) = maxS minj∈[n] vi(Sj), where the maximum is over all partitions

S = (S1, . . . , Sn) of [m] into n bundles. Here, an agent justifies her claim by showing

that n claims identical to hers can be simultaneously satisfied.3 For additive valua-

tions, the MMS is feasible when n = 2 as shown by the well-known divide-and-choose

mechanism, but becomes infeasible when n ≥ 3 (non-trivial counterexamples were

constructed in [61]). A constant fraction of the MMS is feasible for additive valua-

tions, as well as submodular and XOS valuations [61, 43, 3]. However, for general

monotone valuations, no constant fraction of the MMS is feasible (see Example 4 in

Appendix A).

To the best of our knowledge, the existing literature has not come up with any

meaningful notion of a share that is universally feasible. Our main conceptual con-

tribution is the definition of a new parametric family of share notions that we call

quantile shares. We then try to optimize the choice of parameter that renders these

shares universally feasible, or feasible for some important subclasses of valuation

functions.

Quantile shares. If goods were divisible, the agents’ equal rights could be inter-

preted as entitling every agent to receive a 1
n fraction of each good. But goods are

indivisible in our model, so we can instead think of every agent as being entitled to

receive each good with probability 1
n (independently across goods). Thus, agent i is

entitled to a random bundle Xi distributed as above (equivalently, this is agent i’s

bundle in a random allocation S chosen uniformly among all nm possible allocations).

While randomization is not allowed when selecting an allocation in our model, the

hypothetical random bundle Xi can be used by agent i to measure her satisfaction

with an actual bundle Si that is offered to her. She can ask herself: What is the

probability that the random bundle Xi would be weakly worse than the actual bun-

dle Si? The higher this probability, the more satisfied she is receiving Si. By setting

a threshold q for this probability, we define the q-quantile share τq(vi, n).
Formally, recall that given a real-valued distribution with CDF F and a parameter

0 < q ≤ 1, the q-quantile is defined as sup{t ∈ R ∶ F (t) < q} or equivalently min{t ∈ R ∶
3The MMS is obviously an upper bound on any feasible share. Indeed, if τ is a feasible share,

then in particular it must be possible to allocate to n agents with identical valuations vi bundles
worth at least τ(vi, n) each.
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F (t) ≥ q}. For example, the 1
2 -quantile is the median of the distribution.

Definition 1 (q-quantile share, q-fair). The q-quantile share τq(vi, n) is the q-quantile
of the distribution of vi(Xi), where Xi is the random bundle that contains each good

independently with probability 1
n . A bundle T is said to be q-quantile fair (or in short,

q-fair) towards agent i if vi(T ) ≥ τq(vi, n).4

Note that quantile shares are ordinal in nature. Indeed, to determine whether a

particular bundle is fair towards an agent, her ordinal preferences over the bundles

suffice; no cardinal information is required. An alternative motivation for the notion

of quantile shares in terms of veto rights is introduced below in Section 2.1.

Notably, for any share notion, given a profile of valuation functions v1, . . . , vn that

admits a fair allocation, there clearly exists an allocation that is both fair and efficient.

In the case of our q-quantile share this can be attained in the following egalitarian

way. For any allocation S = (S1, . . . , Sn), let qi be the quantile of vi(Si) for i =
1, . . . , n. Then an allocation S that lexicographically maximizes the non-decreasingly

rearranged n-tuple of qi’s is Pareto optimal and yields the highest possible mini∈[n] qi

at the profile v1, . . . , vn.

1.1 Our Results

We find an interesting connection between the feasibility of q-quantile shares and the

famous Erdős Matching Conjecture. Roughly speaking, we show that if the Erdős

Matching Conjecture is true, then the 1
2e -quantile share is universally feasible. To the

best of our knowledge, this is the first non-trivial notion of shares that is (at least

conjecturally) universally feasible. Here we state our main results in succinct form.

A detailed account of the Erdős Matching Conjecture in combinatorics, its history

and variants, and their relevance to our problem, appears in Section 3.

Theorem: (see Theorem 1) If the Erdős Matching Conjecture is true (even for a

specified special case), then the 1
2e -quantile share is feasible for any profile of identical

(across agents) monotone valuations.

Theorem: (see Theorem 2) If the Rainbow Erdős Matching Conjecture is true (even

for a specified special case), then the 1
2e -quantile share is universally feasible.

4Interestingly, if instead of considering quantiles of a distribution vi(Xi) we consider its expec-
tation, then for an additive valuation vi we get precisely the definition of the proportional share.

5



These positive results are tight up to a factor of 2; we show that the 1
e -quantile

share is infeasible (see Proposition 3).

We then turn to unconditional feasibility results for some special classes of val-

uation functions. Definitions of these classes are given in Section 4. For additive

valuations, we show the following.

Proposition: (see Proposition 4) For every profile of additive valuations, the q-

quantile share is feasible for every q < 0.14
e , as n→∞.

For unit-demand and matroid-rank valuations, we identify the critical value of

q = 1
e as the switching point from feasibility to infeasibility.

Proposition: (see Propositions 6 and 8) For every profile of unit-demand valuations

or of matroid-rank valuations, the q-quantile share is feasible for every q < 1
e and is

infeasible for q > 1
e for sufficiently large n.

A few remarks are in order.

First, we believe that for general monotone valuations, the threshold for feasibility

is exactly (1 − 1
n)n−1, which approaches 1

e as n grows. We discuss this in Section 5.1,

and present some evidence for small values of n and m in Appendices C and D.

Second, it is interesting to note that the above feasibility results, when restricted

to profiles of identical valuations, can be interpreted as lower bounds on the quantiles

of the maximin share (see Section 5.2).

Third, unlike the maximin share, quantile shares can essentially be efficiently

computed. Moreover, for additive, unit-demand, and matroid-rank valuations, our

existence results suggest constructive algorithms (see Section 5.3).

Finally, in Section 5.4 we show that the feasibility of the q-quantile share for

constant q does not extend to the allocation of chores (bads).

1.2 Related Literature

The formal study of fair division commenced with the work of Banach, Knaster

and Steinhaus [67] in the 1940s. They worked on the problem of fairly dividing a

heterogeneous divisible good (referred to as cake-cutting) and devised a procedure

to attain the proportional share, in which each of the n agents gets a piece of the

cake of value at least a 1
n fraction of their value for the entire cake. For two agents,

this is famously achieved by the divide-and-choose mechanism. For n > 2 agents
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one can apply either more sophisticated, iterated versions of divide-and-choose, or a

mechanism using a continuously moving knife. There is a large body of literature on

the cake-cutting problem and its generalizations, e.g. [24, 49, 31, 18, 64, 26, 6, 2, 16].

However, with indivisible items it is easy to see that proportionality is unattain-

able: consider the case of two agents and a single good. In this setting, inspired by the

divide-and-choose mechanisms from the cake-cutting literature, Budish [19] defined

a new fairness notion called the maximin share (MMS). For additive valuations, the

MMS is weakly smaller than the proportional share; however, Budish left open the

problem of whether an MMS allocation (one in which every agent receives a bundle

of value at least its maximin share) always exists. Procaccia and Wang [61] show

that the MMS is not always feasible even for three agents with additive valuations,

thereby initiating a line of research into the existence of feasible approximations and

relaxations of the MMS guarantee [61, 43, 41, 33, 45, 3].

More recently, Babaioff and Feige [8] formally define the general notion of a share

as a value guaranteed to an agent, based only on that agent’s valuation and the

number of agents, and focus on several desirable properties of shares. One of these

properties is self-maximization which, roughly speaking, incentivizes agents to re-

port their valuation truthfully under a worst-case fair allocation. While the maximin

share is itself infeasible, it is self-maximizing. By contrast, while some multiplicative

approximations of the maximin share are known to be feasible, no such approxima-

tion is self-maximizing [8]. It is easy to see that our notion of quantile shares is

self-maximizing. Another desirable property is being undominated : it should be im-

possible to promise more value to the agents and still maintain feasibility. We notice

that in the class of unit-demand valuations, where we exactly determine the critical

value q for feasibility, the corresponding q-quantile share is undominated.

The idea of measuring the satisfaction of agents via quantiles is not new. In the

case of two agents the criterion of exceeding the median quantile has been considered

by De Clippel et al. [23]. Exceeding a general quantile for two agent allocation

problems has been considered by Meir et al. [56].

As explained above, the share-based approach to defining fairness considers for

each agent only the bundle allocated to that agent and sets a threshold for its value.

The other prominent approach in the literature is envy-based: each agent should

weakly prefer its own bundle to the bundle of any other agent. The existence of

such an envy-free allocation in the cake-cutting problem was shown by Dubins and
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Spanier [24]. The envy-freeness test was defined and studied in different economic

models by Foley [34] and Varian [70]. In the allocation problem with indivisible

goods studied here, envy-freeness is clearly unattainable, which has led researchers to

consider some weaker requirements. Envy-freeness up to one good (EF1), introduced

by Budish [19], requires that if agent i envies agent j, then this envy can be eliminated

by removing some good from agent j’s bundle. This is known to be feasible for

arbitrary monotone valuations. While we do not focus here on envy-based fairness,

we do show in Section 4 that any EF1 allocation is also fair in our sense for some

special classes of valuations (additive, unit-demand). We also mention envy-freeness

up to any good (EFX), which strengthens EF1 by replacing ‘some good’ by ‘any good

of positive marginal value’ (Caragiannis et al. [20]). Whether or not EFX is feasible

for additive valuations is a major open problem (see Procaccia [60] for a perspective

on this problem, and [59, 55, 22, 15] for affirmative answers in some special cases,

notably when there are at most 3 agents).

A complementary line of research seeks to adapt well-known solution concepts

from other economic models to the indivisible case and investigate the fairness prop-

erties of the resulting allocations. One such concept coming from general equilibrium

theory (Arrow and Debreu [5]) is the competitive equilibrium from equal incomes

(CEEI). Another such concept coming from bargaining theory (Nash [58], Kaneko

and Nakamura [48]) is the Nash max product of values (NMP). For additive valua-

tions over divisible goods, these two solutions are known to coincide (Eisenberg and

Gale [27]). With indivisible goods, CEEI may not exist, but several researchers have

studied the fairness of some approximate versions of CEEI [19, 13, 10]. NMP is

well-defined in the indivisible case, and its fairness properties for additive valuations

over indivisible goods were studied by Caragiannis et al. [20]. Yet another concept

inspired by the Rawlsian egalitarian theory of justice [62, 63] is the maximin welfare

function. In the indivisible case, the allocations that attain (some refinement of) this

maximin were studied by Bansal and Sviridenko [11] for additive valuations, and by

Plaut and Roughgarden [59] for general valuations.
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2 A Reformulation and Preliminary Observations

2.1 Quantile Shares as Vetoes

We provide here an alternative interpretation of quantile shares. Consider a scenario

where an allocator is unaware of the agent valuations, and every agent reports a veto

list of allocations they deem unacceptable. The allocator’s goal is to come up with an

allocation that is not contained in the collective veto lists submitted by the agents.5

Fairness here is captured by the fact that each agent is limited to the same size for

their veto list. Formally, let b denote the maximal size of the veto list submitted by

every agent, and let Li be the veto list of agent i, where ∣Li∣ ≤ b. The following natural

question arises: How large can the parameter b be while ensuring the existence of an

allocation S ∉ ⋃iLi for all possible list reports?

Clearly, this question is meaningful only when restricting attention to veto lists

that satisfy a monotonicity condition. (In the absence of this restriction, one can

easily see that nm

n is a tight threshold. Indeed, since the total number of allocations

is nm, then if b ≥ nm

n , then the agent lists might cover the entire set of possible

allocations, and if b < nm

n , then there must exist an allocation that does not belong

to the union of all veto lists.)

Definition 2. A veto list Li is monotonicity-consistent6 if

(Si, S−i) = S ∈ Li⇒ (S′i, S′−i) = S′ ∈ Li for every S′i ⊆ Si and every S′−i.

The question then becomes: How large can b be while ensuring the existence

of an allocation S ∉ ⋃iLi for all possible monotonicity-consistent list reports? This

question turns out to be equivalent to the feasibility of q-quantile shares, either for the

full class of monotone valuations V or for its subclass V01 of monotone 0/1-valuations

ui ∶ 2[m] → {0,1}. This is cast in the following proposition.

Proposition 1. The following three statements are equivalent:

5Note that while every agent cares only about its own bundle, we ask each agent to veto a list
of full allocations. This is in line with the usual setting of veto mechanisms in social choice, where
agents get to veto a subset of social outcomes—in our case, allocations.

6Note that monotonicity-consistency does not allow an agent to interfere in the allocation of
others. This is captured by the requirement for the case Si = S

′
i.
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1. For all monotonicity-consistent lists L1, ..., Ln of size at most b there exists

S ∉ ⋃iLi.

2. For q = b+1
nm the q-quantile share is universally feasible.

3. For q = b+1
nm the q-quantile share is feasible for all monotone 0/1-valuations.

Proof. (2 ⇒ 3) is trivial. Thus, it remains to prove that (1 ⇒ 2) and (3 ⇒ 1).

We first show that (1 ⇒ 2). If the q-quantile share is infeasible for the profile

of monotone valuations v1, ..., vn, then let Li = {S ∶ vi(Si) < τq(vi, n)}. Note that

∣Li∣ ≤ b because we have at most b allocations whose value for agent i is strictly worse

than the (b + 1)’th worst value. The fact that τq is infeasible implies that for every

allocation S = (S1, ..., Sn) there exists an agent i for whom vi(Si) < τq(vi, n); namely

S ∈ Li.

We next show that (3 ⇒ 1). Let L1, ..., Ln be monotonicity-consistent veto lists

of size at most b. Note that whether or not S ∈ Li depends only on Si, and this

dependence is monotone. Hence, for each i ∈ [n], we can define a monotone 0/1-

valuation ui by: ui(Si) = 0 if S ∈ Li and ui(Si) = 1 if S ∉ Li. Then in a random

allocation we have ui(Xi) = 0 with probability at most b
nm and ui(Xi) = 1 with the

remaining probability. Since b
nm < q, the q-quantile of ui(Xi) is 1. The feasibility of

the q-quantile share implies the existence of an allocation S = (S1, ..., Sn) such that

ui(Si) = 1 for all i ∈ [n], or equivalently S ∉ ⋃iLi.

Let us now revisit our results with Proposition 1 in hand. Recall that in the

absence of the monotonicity restriction on the veto lists, feasibility can only be main-

tained if b < nm

n , that is, the fraction of vetoed allocations shrinks as the number of

agents grows. In contrast, our main results imply that under monotonicity-consistent

lists, the size of the lists can be as large as b = ⌊nm

2e ⌋. Namely, the fraction of vetoed

allocations can be constant, independent of the number of agents and the valuation

profiles, while still ensuring feasibility.

2.2 Lower and Upper Bounds for Feasibility

First, we use the union bound to obtain the following feasibility result for the class

V of all monotone valuations.

Proposition 2. For every n,m ∈ N the 1
n-quantile share is universally feasible.
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Proof. By Proposition 1, it suffices to show that given any veto lists L1, ..., Ln, each

of size strictly less than nm

n = nm−1, there exists an allocation S ∉ ⋃iLi. This follows

from the union bound.

A straightforward infeasibility result is implied by a scenario in which n−1 goods

with strictly positive values are allocated to n agents, which inevitably implies the

existence of an agent that gets nothing. This example leads to the following upper

bound.

Proposition 3. For every n,m ∈ N such that m ≥ n − 1, the q-quantile share is

infeasible for q > (1 − 1
n)n−1. In particular, asymptotically (as n → ∞) the q-quantile

share is infeasible for q > 1
e .

Proof. Let vi be a valuation that satisfies vi(Si) > 0 if Si ∩ [n − 1] ≠ ∅ and vi(Si) = 0

otherwise. Every allocation S has at least one agent i who receives none of the goods

from [n − 1], and hence vi(Si) = 0. In the random allocation, for agent i’s bundle Xi

we have

P[vi(Xi) = 0] = (1 − 1

n
)
n−1

.

Therefore, for q > (1 − 1
n)n−1 the q-quantile of vi(Xi) is strictly positive, and hence

the bundle Si with vi(Si) = 0 is not q-fair towards agent i.

Remark 1. Later, we will consider special classes of valuations. In each of these

classes, there is a valuation vi that satisfies vi(Si) > 0 iff Si ∩ [n − 1] ≠ ∅. Therefore,

the 1
e + O( 1n) upper bound of Proposition 3 applies to all these classes without any

modification to the proof.

Propositions 2 and 3 precisely determine the critical value of q at which q-quantile

shares shift from being feasible to infeasible, for the case of two agents.

Corollary 1. For n = 2 the 1
2-quantile share is the largest feasible quantile share.

However, as n becomes larger the gap between the feasibility result of Proposition

2 and the infeasibility result of Proposition 3 increases; the largest feasible value of

q is located in the interval [ 1n , (1 − 1
n)n−1] ≈ [ 1n , 1e]. The main question that we try to

address in this paper is:

Are q-quantile shares feasible for a constant q > 0 that is independent of n and m?
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3 Feasibility of Quantile Shares via Erdős Match-

ing Conjectures

Our main results show that the q-quantile share is universally feasible for a constant

q, under the assumption that the Erdős Matching Conjecture is true. We first present

the result for the case of identical valuations (Section 3.1). Thereafter, we extend

these arguments to general (non-identical) valuations (Section 3.2).

3.1 Identical Valuations

In this section, we restrict attention to the case where all agents have an identical

(monotone) valuation function vi = v ∈ V .

Our main result uncovers a surprising connection between the feasibility of quan-

tile shares and the well-known Erdős Matching Conjecture. We start this section by

describing the conjecture and its connection to our problem.

Erdős’ conjecture considers the following question: what is the maximum size of

a family of k-element subsets of an m-element set if it has no collection of n pairwise

disjoint sets? To state it, we need the following terminology and notation. An l-

matching is a collection of l pairwise disjoint sets. Given a family of sets F , the

matching number ν(F) is the maximal l such that an l-matching from F exists. The

Erdős Matching Conjecture gives a bound on the maximum cardinality of F subject

to the condition ν(F) < n. Concretely, the conjecture focuses on the case where the

family consists of k-element sets over the universe [m] and states the following.

Conjecture (Erdős Matching Conjecture [28]). For every m,k,n ∈ N such that m ≥
kn, and every F ⊆ ([m]k ) for which ν(F) < n, we have

∣F∣ ≤max{(m
k
) − (m − n + 1

k
),(kn − 1

k
)}.

The expressions (mk ) − (
m−n+1

k
) and (kn−1k

) have simple interpretations in this con-

text. One strategy for constructing a large family of sets with no n-matching is to

enforce the property that every set includes at least one element from [n − 1]. Then

an intersection between n sets must occur somewhere in these n − 1 elements. Such

a construction yields ∣F∣ = (mk ) − (
m−n+1

k
). Another strategy for constructing a large
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family of sets with no n-matching is to reduce the universe from which the elements

are taken. Reducing it to [kn − 1] is sufficient to prevent an n-matching. Such a

construction yields ∣F∣ = (kn−1k
). The conjecture states that for every k,n and m ≥ kn,

one of these two constructions is optimal (that is, it constructs the largest possible

family with no n-matching).

This conjecture has received considerable attention over more than half a century.

The special case n = 2 is the well-known Erdős-Ko-Rado theorem [29]. The conjecture

is trivial when k = 1, was proved by Erdős and Gallai [30] for the case k = 2, and was

proved much more recently in a sequence of works for the case k = 3 [39, 53, 36]. The

conjecture was established for sufficiently large m (compared to n and k) by many

authors; the conditions on how large m needs to be have become weaker over time,

but they are still stronger than the conjectured m ≥ kn; see e.g., [28, 46, 35, 38] to

mention just a few.

We will utilize the Erdős Matching Conjecture for the case where n is fixed, k →∞
and m = n(k+1). In this case it can be verified that (mk )−(

m−n+1
k
) ≥ (kn−1k

); see Lemma

2 in Appendix B. Thus the special case of the Erdős Matching Conjecture that we

need is the following.

Conjecture 1 (Erdős Matching Conjecture – special case). For every n there exists

k0 such that for every k ≥ k0, m = (k + 1)n, and every F ⊆ ([m]k ) for which ν(F) < n,
we have

∣F∣ ≤ (m
k
) − (m − n + 1

k
).

To the best of our knowledge, the Erdős Matching Conjecture remains a conjecture

in this special case.7

Connection to quantile shares. To establish a connection between our prob-

lem and the Erdős Matching Conjecture we utilize Proposition 1 and consider 0/1-

valuations. The connection to the Erdős Matching Conjecture follows from the fol-

lowing analogies. We set F = {Si ⊆ [m] ∶ u(Si) = 1}. Namely, F is the collection of

subsets in which an agent gets a value of 1 and hence is satisfied. The notion of an

n-matching of subsets of [m] corresponds to an allocation: we cannot allocate the

same good to two different agents; i.e., pairwise disjointness. With this interpreta-

tion, the Erdős Matching Conjecture states that if no allocation yields every agent

7A somewhat “close” region in which the conjecture is known to be true is kn ≤ m ≤ (k + ϵk)n
for some constant 0 < ϵk < 1 that does not depend on n [37].
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a value of 1 (i.e., ν(F) < n), then there are not too many subsets in which an agent

has a value of 1 (i.e., ∣F∣ is bounded from above).

Despite this tight connection of the two problems, there is an obvious obstacle:

In the allocation problem, we are allowed to allocate to agents different numbers of

goods, whereas the Erdős Matching Conjecture deals with k-subsets, namely corre-

sponds to the case where all agents get the same number of goods k. Somewhat

surprisingly, it turns out that a careful choice of the number of goods that we allo-

cate to the agents,8 combined with the Kruskal-Katona theorem (see below) implies

a feasibility result for a constant q. We formulate below the special case of the

Kruskal-Katona Theorem that we utilize in the proof.

Theorem (Lovász’s simplified formulation of the Kruskal-Katona Theorem [51]). Let

Gk ⊆ ([m]k ) be a family of k-subsets. For every k′ ≤ k we define ∂k′Gk ⊆ ([m]k′
) by 9

∂k′Gk = {S′ ∈ (
[m]
k′
) ∶ ∃S ∈ Gk s.t. S′ ⊆ S}.

If ∣Gk∣ ≥ (m
′

k
) for some m′ ≤m then ∣∂k′Gk∣ ≥ (m

′

k′
).

We are now ready to formulate and prove the result for identical valuations.

Theorem 1. If the Erdős Matching Conjecture is true for the special case of Con-

jecture 1, then for every n,m ∈ N the 1
2e-quantile share is feasible for any profile of

identical valuations in V.

Proof. By Proposition 1 it suffices to prove that the 1
2e -quantile share is feasible for

every profile of identical valuations in V01. We fix some ϵ > 0 and prove the feasibility

of the ( 1
2e − ϵ)-quantile share; this will suffice because the critical value of feasibility

is located on the discrete grid of 1
nm .

Note that feasibility of the q-quantile share for m′ implies feasibility of the q-

quantile share for every m′′ < m′ because we can set the marginal contribution of

the last m′ −m′′ goods to be identically 0. Therefore we can assume without loss of

generality that m is large enough (to be specified below). Moreover, we can choose

m to satisfy that m
n is an integer.

8The naive choice of k = ⌊m
n
⌋ does not provide a desired feasibility result. But k = ⌊m

n
⌋ − 1 does.

9∂k′Gk is called the shadow of Gk on ([m]
k′
).
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Note that ∣Xi∣ – the number of goods that agent i receives in a random allocation

– is distributed according to Bin(m, 1
n). For a fixed n, by the Central Limit Theorem

we know that limm→∞ P[∣Xi∣ < m
n ] = 1

2 . We set m to satisfy:

1. m
n is an integer.

2. m
n − 1 ≥ k0 for the k0 in Conjecture 1.

3. P[∣Xi∣ < m
n ] ≥ 1

2 − ϵ.

Let u ∈ V01, let F = {S ∶ u(S) = 1}, and for each k let Fk = F ∩ ([m]k ). Similarly let

G = {S ∶ u(S) = 0}, and let Gk = G ∩ ([m]k ). If F contains a matching of size n, then

(by monotonicity) there is an allocation S with u(Si) = 1 for all i ∈ [n]. Thus we may

assume that ν(F) < n, and in particular that ν(Fk) < n for k = m
n − 1. By the Erdős

Matching Conjecture (the special case of Conjecture 1), we have

∣Fk∣ ≤ (
m

k
) − (m − n + 1

k
),

or equivalently

∣Gk∣ ≥ (
m − n + 1

k
).

Let k′ ≤ k. The monotonicity of u implies that ∂k′Gk ⊆ Gk′ , and therefore by the

Kruskal-Katona Theorem we get

∣Gk′ ∣ ≥ (
m − n + 1

k′
).

The fraction of k′-sets in which an agent has a 0 value is bounded from below by:

∣Gk′ ∣
(m
k′
)
≥
(m−n+1

k′
)

(m
k′
)
= (m − k

′) ⋅ (m − k′ − 1) ⋅ ... ⋅ (m − n − k′ + 2)
m ⋅ (m − 1) ⋅ ... ⋅ (m − n + 2) =

=(1 − k′

m
) ⋅ (1 − k′

m − 1
) ⋅ ... ⋅ (1 − k′

m − n + 2
) ≥ (1 − k′

m − n + 2
)
n−1
≥

≥(1 − k

m − n + 2
)
n−1
≥ (1 − k

m − n)
n−1
= (1 − 1

n
)
n−1
≥ 1

e
.

In a random allocation, the probability that an agent will have a 0 value is at least

(12 − ϵ)1e . Indeed, with probability at least (12 − ϵ) the random bundle Xi will satisfy

∣Xi∣ < m
n , i.e., ∣Xi∣ ≤ k. Conditional on ∣Xi∣ = k′ ≤ k, the probability of having 0 value
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is at least 1
e (because the conditional distribution is uniform over ([m]k′

)). Therefore,

the ( 1
2e − ϵ)-quantile of u(Xi) is located at 0 and the agents are satisfied even if they

get a value of 0.

3.2 General Valuations

To apply the techniques of Section 3.1 to general valuations (not necessarily identical)

a stronger version of the conjecture is needed. Instead of having a single family

F (which reflects the valuation of an agent), we have n possibly different families

F1, ...,Fn, one for each agent. Interestingly, such a variant of the Erdős Matching

Conjecture has been studied in the literature; see [46, 1, 40, 52, 50].

Given F1, . . . ,Fn ⊆ ([m]k ), a rainbow matching in (F1, . . . ,Fn) is a collection of

pairwise disjoint sets S1, . . . , Sn, where Si ∈ Fi for each i ∈ [n]. The collection of

families is cross-dependent if it has no rainbow matching.

Conjecture (Rainbow Erdős Matching Conjecture [46, 1]). For every m,k,n ∈ N
such that m ≥ kn, and every cross-dependent collection of families F1, . . . ,Fn ⊆ ([m]k ),
we have

min
i∈[n]
∣F i∣ ≤max{(m

k
) − (m − n + 1

k
),(kn − 1

k
)}.

The Rainbow Erdős Matching Conjecture generalizes the Erdős Matching Con-

jecture because one can set F i = F for all i ∈ [n] which gives precisely the Erdős

Matching Conjecture. Similarly to Section 3.1, we will need the validity of the con-

jecture for a special case.

Conjecture 2 (Rainbow Erdős Matching Conjecture - special case). For every n

there exists k0 such that for every k ≥ k0, m = (k + 1)n, and every cross-dependent

collection of families F1, . . . ,Fn ⊆ ([m]k ), we have

min
i∈[n]
∣F i∣ ≤ (m

k
) − (m − n + 1

k
).

Analogously to the case of identical valuations, we have the following result for

general monotone valuations.

Theorem 2. If the Rainbow Erdős Matching Conjecture is true for the special case

of Conjecture 2, then for every n,m ∈ N the 1
2e-quantile share is universally feasible.
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Proof. As in the proof of Theorem 1, it suffices to consider a profile of 0/1-valuations

u1, . . . , un ∈ V01, and prove the feasibility of the ( 1
2e − ϵ)-quantile share (for arbitrary

ϵ > 0). Moreover, we may assume that the ( 1
2e − ϵ)-quantile of every ui is equal to

1. Indeed, any ui whose quantile is 0 places no constraints on the allocation, so we

may replace such ui by an arbitrary u′i whose quantile is 1. Furthermore, we set m

to satisfy conditions 1–3 as in the previous proof.

Assume for the sake of contradiction that no allocation ensures ui(Si) = 1 for all

i ∈ [n]. We define F i = {Si ∶ ui(Si) = 1}, and let F i
k = F i∩([m]k ). Thus, for k = m

n −1, the

collection F1
k , . . . ,Fn

k is cross-dependent. By the Rainbow Erdős Matching Conjecture

(the special case of Conjecture 2), we have

∣F i
k∣ ≤ (

m

k
) − (m − n + 1

k
)

for some i ∈ [n]. We repeat the same arguments as in the proof of Theorem 1 to

deduce that in a random allocation this particular agent i must have a probability of

at least (12 − ϵ)1e to have a 0 value. This contradicts the fact that the ( 1
2e − ϵ)-quantile

of ui is located at 1.

Remark 2. While the Rainbow Erdős Matching Conjecture implies that the 1
2e-

quantile share is universally feasible, in order to unconditionally prove the feasibility

of the q-quantile share for some constant q > 0, it suffices to prove the following

approximate version of the conjecture.

Conjecture 3 (Approximate Rainbow EMC – special case). There exists some con-

stant C > 0 such that for every n there exists k0 such that for every k ≥ k0, m = (k+1)n,
and every cross-dependent collection of families F1, . . . ,Fn ⊆ ([m]k ), we have

min
i∈[n]
∣F i∣ ≤ (m

k
) −C ⋅ (m − n + 1

k
).

To the best of our knowledge, even such an approximate version of the EMC has

not been established. Proving it could be of independent interest to the combinatorics

community.
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4 Unconditional Feasibility Results

Theorems 1 and 2 provide quite surprising and reasonably tight bounds on the critical

value of feasibility for quantile shares. In particular, asymptotically (as n→∞), the

critical threshold between feasibility and infeasibility is conjectured to reside in [ 12e , 1e]
(we recall the bound of Proposition 3). An obvious shortcoming of these results is

the fact that they rely on conjectures (well-known conjectures, but yet conjectures).

In this section, we present some unconditional positive results for special classes of

valuations. For any valuation function v ∶ 2[m] → R+ we denote by v(j ∣ S) the

marginal value of j ∈ [m] given the set S ⊆ [m], that is v(j ∣ S) = v(S ∪ {j}) − v(S).

4.1 Additive Valuations

The class of additive valuations is the most well-studied class of valuations in the

context of fairness. We denote by w(i, j) the value agent i has for good j (where

w(i, j) ≥ 0 for all i, j).

Definition 3. The valuation function vi is additive if vi(S) = ∑j∈S w(i, j) for all

S ⊆ [m].

We prove the following feasibility result for constant values of q.

Proposition 4. For every n,m ∈ N the 0.14(1− 1
n)n-quantile share is feasible for the

class of additive valuations. In particular, asymptotically (as n → ∞) the q-quantile

share is feasible for every q < 0.14
e .

In comparison with Theorem 2, this Proposition provides a worse bound (0.14e
versus 0.5

e ) and is applicable to additive valuations only. However, it does not rely on

any conjectures.

The proof of Proposition 4 relies on deviation of sums inequalities. These inequal-

ities bound the probability that the sum of independent random variables will exceed

its mean. Several such inequalities have been suggested in the literature [66, 32, 42].10

For our purposes, the special case of Bernoulli random variables will play a role. For

this special case, the following inequality has been established.

10Interestingly, some connections between the deviation of sums inequalities and the Erdős Match-
ing Conjecture have been established [54, 38].
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Lemma (Arieli et al. [4]). For every p ∈ [0,1], m ∈ N and w1, . . . ,wm ≥ 0, if b1, . . . , bm

are i.i.d. Bernoulli(p) random variables, then

P [
m

∑
j=1

wjbj ≥ (
m

∑
j=1

wj)p] ≥ 0.14p.

This Lemma follows from the inequality of Feige [32] and its subsequent improve-

ment by Garnett [42].11 By flipping the roles of 0 and 1 in the Bernoulli random

variables we get the following equivalent formulation.

Lemma 1. For every p ∈ [0,1], m ∈ N and w1, . . . ,wm ≥ 0, if b1, . . . , bm are i.i.d.

Bernoulli(p) random variables, then

P [
m

∑
j=1

wjbj ≤ (
m

∑
j=1

wj)p] ≥ 0.14(1 − p).

We now turn to the proof of Proposition 4.

Proof of Proposition 4. We will show that the round-robin algorithm terminates with

an allocation in which every agent is 0.14(1− 1
n)n-satisfied. The round-robin algorithm

has m steps. In every step t = dn + i ∈ [m] the algorithm allocates to agent i her

most preferable good from the remaining m− t+1 goods, breaking ties in favor of the

lowest-indexed good.

We first show that agent 1 ends up being 0.14(1 − 1
n)-satisfied in the round-robin

algorithm. For simplicity of notation, we let wj = w(1, j) be the value of agent 1 for

good j. Assume without loss of generality that w1 ≥ ⋯ ≥ wm; namely that agent 1’s

preferences over goods are in decreasing order. We denote by a1, ..., ak the goods that

were allocated to agent 1. We denote by W 1
RR = wa1 + ... + wak the value of agent 1

in the round-robin algorithm. Note that a1 ≤ 1, a2 ≤ n + 1,..., and ak ≤ (k − 1)n + 1,

because in step t = dn + 1, in the worst case, the goods [dn] were already allocated.

11Any further improvement of the constant in the Feige-Garnett inequality would carry over
directly to the Lemma. Such an improvement, from 0.14 to 0.1798, has appeared in an unpublished
manuscript [44].
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Therefore,

W 1
RR ≥ w1 +wn+1 +⋯ +w(k−1)n+1 ≥

≥ 1

n
[w1 + ... +wn] +

1

n
[wn+1 + ... +w2n] + ... +

1

n
[w(k−1)n+1 + ... +wm] =

1

n
∑

j∈[m]
wj.

For additive valuations, the value of agent 1 in a random allocation can be written

as v1(X1) = ∑j∈[m]wjbj where b1, ..., bm are i.i.d. Bernoulli( 1n) random variables. By

Lemma 1 we get that with probability at least 0.14(1 − 1
n) her realized value will

be (weakly) below the expectation 1
n ∑j∈[m]wj and hence (weakly) below what she

actually gets in the round-robin algorithm: W 1
RR. Namely agent 1 is 0.14(1 − 1

n)-
satisfied.

Now we turn to prove that every agent i = 2, ..., n is 0.14(1 − 1
n)i-satisfied. We

observe that after i − 1 steps of the round-robin algorithm agent i plays the role of

agent 1 with one difference: a set of i − 1 goods, which we denote by A ⊆ [m] has

already been eliminated from the pool of goods. We denote by E the event that agent

i does not get any good from A in a random allocation. Note that P[E] = (1− 1
n)i−1.

We repeat the above arguments for agent i instead of agent 1 when we condition

the random bundle Xi on the event E. We denote by W i
RR the value of agent i in

the round-robin algorithm. By the arguments above we get P[vi(Xi) ≤ W i
RR∣E] ≥

0.14(1 − 1
n). Therefore,

P[vi(Xi) ≤W i
RR] ≥ P[E]⋅P[vi(Xi) ≤W i

RR∣E] ≥ (1 −
1

n
)
i−1
⋅0.14(1 − 1

n
) = 0.14(1 − 1

n
)
i

.

Namely, agent i is 0.14(1− 1
n)i-satisfied. Hence every agent is 0.14(1− 1

n)n-satisfied.

For additive valuations, it is well-known that the allocation output by the round-

robin algorithm satisfies the envy-based fairness notion of EF1 (envy-freeness up to

one good), i.e., for every pair of agents i, j for which i envies j, there is a good g

in j’s bundle such that i no longer envies j’s bundle without g. Observe that the

arguments for agent i ∈ {2, ..., n} in the proof of Proposition 4 in fact apply to all

agents in every EF1 allocation. Specifically, we can replace the set of i − 1 goods

removed by round-robin in the first i − 1 steps (in the above analysis) by a set of at

most n − 1 goods that remove agent i’s envy towards every other agent (to satisfy

the EF1 constraints), and obtain the same bound on the quantile. This gives the
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following stronger proposition.

Proposition 5. For every n,m ∈ N and every instance with additive valuations, every

EF1 allocation is 0.14(1 − 1
n)n-fair towards all agents.

4.2 Unit-Demand Valuations

In the class of unit-demand valuations every good j ∈ [m] has a value of w(i, j) ≥ 0

for agent i.

Definition 4. The valuation function vi is unit-demand if vi(S) =maxj∈S w(i, j) for
all S ⊆ [m].

We prove the following tight feasibility result for q = (1 − 1
n)n−1. The tightness

follows from Proposition 3.

Proposition 6. For every n,m ∈ N the (1 − 1
n)n−1-quantile share is feasible for the

class of unit-demand valuations. In particular, the 1
e -quantile share is feasible for this

class.

Proof. The proof is similar to that of Proposition 4 but is, in fact, simpler. We

consider the round-robin algorithm, and we observe that agent 1 is 1-satisfied, because

she is allowed to pick her most favorable good. By the arguments in the proof of

Proposition 4 we deduce that agent i is (1 − 1
n)i−1-satisfied. Thus every agent is

(1 − 1
n)n−1-satisfied.

Once again, an analogue of Proposition 5 applies for all EF1 allocations when the

agents have unit-demand valuations. This follows from the fact that in any instance

with unit-demand valuations and at least n goods, any EF1 allocation gives every

agent a good whose value is at least as high as her nth-most valuable good.

Proposition 7. For every n,m ∈ N and every instance with unit-demand valuations,

every EF1 allocation is (1 − 1
n)n−1-fair towards all agents.

We remark that round-robin fails to achieve a constant quantile for larger val-

uation classes. Indeed, it is not clear how the definition of round-robin extends to

such valuations. A natural choice is to select, for each agent, a good with the highest

marginal value in each round. The following example shows that with this choice,

even for XOS valuations, round-robin results in a quantile that is exponentially small

in n.
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Example 1. Suppose the n agents have an identical XOS valuation function over

m = n2 goods, given by the maximum over n additive functions f1, . . . , fn. The n2

goods are bundled into n groups, each with n identical goods. The function f1 assigns

value 1+ ϵ
2 for each good in group 1, and value ϵ

2ℓ
for each good in group ℓ, for 2 ≤ ℓ ≤ n.

Every other function fi, for 2 ≤ i ≤ n, assigns value 1 for goods in group i and 0 for

all other goods. In a random allocation, with all but exponentially small probability,

an agent gets at least two goods from some group, obtaining a value of at least 2. By

contrast, the round-robin algorithm defined above assigns exactly one good from each

group to each agent; thus every agent obtains a final value of less than 1 + ϵ, which
for ϵ < 1 has an exponentially small quantile.

Note that the allocation produced by the round-robin algorithm in the above

example is envy-free and therefore EF1. Consequently, an analogue of Propositions 5

and 7 does not hold for this class, and does not hold for all monotone valuations.

4.3 Matroid-Rank Valuations

A monotone valuation function v is submodular if the marginal contribution of a

good decreases as the set increases, i.e., v(j ∣ S′) ≤ v(j ∣ S) for S ⊆ S′. Unfortunately,

an unconditional feasibility proof of q-quantile shares for constant q remains elusive

for submodular valuations.

However, there is an important subclass of submodular valuations for which we

can prove that 1
e is the critical threshold for feasibility for large values of n, without

relying on conjectures. These are the matroid-rank valuations, namely those valuation

functions v ∶ 2[m] → N0 (where N0 = N ∪ {0}), for which there exists a matroid M on

[m] so that v(S) is the rank of S in M .

Definition 5. The valuation function vi is matroid-rank if vi is the rank function

of some matroid M = ([m],I) over the ground set [m]. The rank function assigns

to each set S ⊆ [m] the cardinality of a largest independent subset of S, i.e., vi(S) =
maxI∈I,I⊆S ∣I ∣.

It is known that these are precisely the submodular valuations v which satisfy

v(∅) = 0 and v(j ∣ S) ∈ {0,1} for every S and every j. The literature has identified

several kinds of resource-allocation settings where matroid-rank valuations arise nat-

urally: see e.g., [14, 9]. Typically, those are contexts in which the agents’ values are

determined by solving (suitably structured) combinatorial optimization problems.
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Proposition 8. For every n,m ∈ N and q =max{1e − 1

2
√
n(n−1)

, 1
n} the q-quantile share

is feasible for the class of matroid-rank valuations. In particular, asymptotically (as

n→∞) the q-quantile share is feasible for every q < 1
e .

Note that 1
e − 1

2
√
n(n−1)

> 1
n for n ≥ 5, so the 1

n term in the maximum is relevant

only for n = 2,3,4. The proof below utilizes the underlying matroid structure of the

valuations and the powerful Edmonds’ Matroid Intersection Theorem.

Theorem (Edmonds’ Matroid Intersection Theorem [25]). Let M1,M2 be two ma-

troids on the same ground set E, with respective families of independent sets I1,I2
and rank functions ρ1, ρ2. We have

max
I∈I1∩I2

∣I ∣ =min
A⊆E
[ρ1(A) + ρ2(E ∖A)].

Proof of Proposition 8. The feasibility of the 1
n -quantile share has been proved in

Proposition 2. It remains to prove the feasibility of the (1e − 1

2
√
n(n−1)

)-quantile share.

The feasibility of the maximin share for matroid-rank valuations was shown by

Barman and Verma [12]. It is sufficient to prove that for matroid-rank valuations

the maximin share has a quantile of at least 1
e − 1

2
√
n(n−1)

. We fix an agent i with

matroid-rank valuation v and omit the agent’s index notation for clarity.

We denote by M the matroid over the ground set [m] that represents v. Namely,

v(S) is the maximum size of an independent set of M that is contained in S. We

denote by k the maximin share of v. Namely, k is the maximal value k′ for which

there exist n disjoint independent (in M) sets S1, ..., Sn with ∣Sj ∣ = k′.
Let v(S) =min{v(S), k+1} which is also a matroid-rank valuation, and let M be

the corresponding matroid. We define two matroids over the ground set [n] × [m].

• M⊕ is the direct sum of n copies of M . Namely, its independent sets are

those S ⊆ [n] × [m] such that for every i ∈ [n] the set {j ∈ [m] ∶ (i, j) ∈ S}
is independent in M . The corresponding rank function is denoted by ρM⊕ ∶
2[n]×[m] → N0.

• N is the partition matroid with respect to the blocks [n] × {j} for j ∈ [m].
Namely, its independent sets are those S ⊆ [n]×[m] such that for every j ∈ [m]
we have ∣{i ∶ (i, j) ∈ S}∣ ≤ 1. The corresponding rank function is denoted by

ρN ∶ 2[n]×[m] → N0.
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Note that a common independent set of M⊕ and N corresponds to a collection of

n disjoint independent sets of M . Since k is the maximin share we know that there is

no common independent set of M⊕ and N of size (k + 1)n. Now Edmonds’ Matroid

Intersection Theorem implies the existence of a subset A ⊆ [n] × [m] such that

ρM⊕(A) + ρN(([n] × [m]) ∖A) < (k + 1)n. (1)

We denote Ai = {j ∈ [m] ∶ (i, j) ∈ A}. Equation (1) can be equivalently written as

∑
i∈[n]

v(Ai) + ∣ ⋃
i∈[n]
([m] ∖Ai)∣ < (k + 1)n. (2)

Replacing each Ai by A0 = ∩i∈[n]Ai weakly decreases the left-hand side of Equation (2)

because the first term weakly decreases while the second term remains unchanged.

Therefore we get

n ⋅ v(A0) +m − ∣A0∣ < (k + 1)n. (3)

This implies that v(A0) ≤ k. Hence, writing t = k + 1 − v(A0), we have t ≥ 1. With

this notation Equation (3) is equivalent to

m − ∣A0∣ ≤ tn − 1. (4)

For every bundle X ⊆ [m] we argue that the condition ∣X ∖A0∣ ≤ t − 1 implies that

v(X) ≤ k, namely that the agent’s value for the bundle X is weakly lower than the

maximin share. Indeed,

v(X) ≤ v(X ∩A0) + ∣X ∖A0∣ ≤ v(A0) + ∣X ∖A0∣ ≤ v(A0) + t − 1 = k⇒ v(X) ≤ k.

For a random bundle X that includes every good with probability 1
n , the distribution

of ∣X ∖A0∣ is binomial with m − ∣A0∣ trials and probability of success 1
n . This distri-

bution is stochastically dominated by a binomial distribution Y with tn−1 trials and

probability of success 1
n (by Equation (4)). Therefore, it is sufficient to prove that

for every n ≥ 2, t ≥ 1, and Y ∼ Bin(tn − 1, 1
n) we have P[Y < t] ≥ 1

e − 1

2
√
n(n−1)

.

Let Z ∼ Poisson( tn−1n ). Romanowska [65] bounded the total variation distance

between any binomial distribution with success probability p and its approximating
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Poisson distribution by p√
1−p . In our case p = 1

n , so this bound becomes 1√
n(n−1)

.

It follows that for every subset R of N0 we have ∣P[Y ∈ R] − P[Z ∈ R]∣ ≤ 1

2
√
n(n−1)

.

Therefore we can deduce that

P[Y < t] = P[Y ≤ tn − 1

n
] ≥ P[Z ≤ tn − 1

n
] − 1

2
√
n(n − 1)

≥ 1

e
− 1

2
√
n(n − 1)

.

The last inequality follows from Teicher [68] who proved that the realization of any

Poisson distribution is weakly below its expectation with probability greater than
1
e .

Remark 3. For n ≥ 2 let us denote

qn = inf
t∈N

P[Yt < t], where Yt ∼ Bin(tn − 1,
1

n
).

We showed in the proof above that for any given n, the qn-quantile share is feasible

for the class of matroid-rank valuations. In this form, the result is actually tight: take

m = tn − 1, and let each agent’s valuation be represented by the uniform matroid of

rank t over [m]. We conjecture that in fact qn = (1 − 1
n)n−1, i.e., for any given n the

infimum is attained at t = 1. If true, this would show that (1 − 1
n)n−1 is the critical

value for feasibility of quantile shares in the class of matroid-rank valuations, for any

given n. While we are unable to prove this conjecture exactly, in Proposition 8 we

estimate qn up to an error term which vanishes as n→∞.

4.4 Supermodular Valuations

A valuation function is supermodular if the marginal contribution of a good increases

as the set increases.

Definition 6. The valuation function vi is supermodular if vi(j ∣ S′) ≥ vi(j ∣ S) for
S ⊆ S′ ⊆ [m] ∖ {j}.

The class of supermodular monotone valuations is as general as the class of all

monotone valuations in the context of feasibility of quantile shares.

Proposition 9. For every q ∈ (0,1], if the q-quantile share is feasible for the class of

supermodular monotone valuations, then the q-quantile share is universally feasible.
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Proof. Given q ∈ (0,1], i ∈ [n] and a monotone valuation vi ∶ 2[m] → R+, we construct

a supermodular monotone valuation ui ∶ 2[m] → R+ as follows.

The valuation vi induces a weak total order ⪯vi over the set of bundles 2[m]. We

break ties in an arbitrary monotonic manner to derive a strict total order ≺i over the

set of bundles 2[m]. It has been proved by Chambers and Echenique [21] that there

exists a supermodular valuation ui that has the same strict total order ≺i over the

set of bundles.

By the assumption that the q-quantile share is feasible for u1, . . . , un, we get that

there exists an allocation in which ui(Si) is located weakly above the q-quantile of

ui(Xi). Note that the same allocation places vi(Si) weakly above the q-quantile of

vi(Xi), because for every realization Ti of Xi we have vi(Si) < vi(Ti) ⇒ ui(Si) <
ui(Ti). Therefore the q-quantile share is universally feasible.

5 Discussion

5.1 The Gap Between the Constants

Assuming the Erdős Matching Conjectures are true, we have shown that the largest

value of q for which the q-quantile share is universally feasible lies in the interval

[ 12e , 1e]. It remains an open problem to close this 1
2e gap between the two bounds.

We discuss directions to improve the 1
2e bound (Theorems 1 and 2). All the

techniques for proving feasibility results in this paper focus on allocations with almost

equal-size bundles for all agents. In particular Theorems 1 and 2 allocate to every

agent k = m
n −1 goods, and do not specify how to allocate the remaining n goods. But

in any case, no agent will have more than k + n goods. The round-robin algorithm

in Propositions 4 and 6 allocates to every agent ⌊mn ⌋ or ⌈mn ⌉ goods. The following

example demonstrates that in order to improve the 1
2e bound we must exploit the

possibility of allocating goods unequally. In other words, it shows that the 1
2e bound

is tight if every agent must get (approximately) the same number of goods.

Example 2. Let δ > 0 be arbitrarily small. We will construct instances of the allo-

cation problem with n agents and m goods (where 1 << n <<m) satisfying: for every

allocation (S1, . . . , Sn) in which ∣Si∣ ≤ m
n + o(

√
m
n ) for all i ∈ [n], there exists an agent

who is not ( 1
2e + δ)-satisfied.
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First, we choose n large enough so that (1 − 1
n)n−1 ≤ 1

e + δ. Next, for any such

n, we choose m large enough so that for Y ∼ Bin(m − n + 1, 1
n) we will have, by the

Central Limit Theorem, P[Y ≤ m
n + o(

√
m
n )] ≤ 1

2 + δ. Finally, for any such n and m,

we choose ϵ > 0 small enough so that ϵ(mn + o(
√

m
n )) < 1.

For these choices of n,m and ϵ, consider identical additive valuations for all

agents, in which the value of every good j ∈ [n − 1] is wj = 1, and the value of

every good j ∈ {n,n + 1, . . . ,m} is wj = ϵ; we call the former 1-goods and the latter

ϵ-goods.

Let (S1, . . . , Sn) be an allocation in which ∣Si∣ ≤ m
n + o(

√
m
n ) for all i ∈ [n]. Let

i be an agent who gets no 1-good, and therefore has vi(Si) ≤ ϵ(mn + o(
√

m
n )) < 1.

In a random allocation we have vi(Xi) ≤ ϵ(mn + o(
√

m
n )) exactly when the following

two independent events happen: agent i gets no 1-good, and at most m
n + o(

√
m
n ) ϵ-

goods. By our choices above, the probability of these two events happening is at most

(1e + δ)(12 + δ) < 1
2e + δ (here we assume, w.l.o.g., that δ < 1

2 − 1
e). This shows that Si

is not ( 1
2e + δ)-fair towards agent i, as claimed.

Note that in this example the 1
e -quantile share is at most ϵ(m − n + 1), the total

value of the ϵ-goods. Hence, when ϵ(m−n+ 1) ≤ 1, we can give all the ϵ-goods to one

agent and one 1-good to every other agent, so that everyone will be 1
e -satisfied. This

allocation uses bundles whose sizes significantly differ.

We tend to conjecture that 1
e for n → ∞ (and more ambitiously (1 − 1

n)n−1 for

any given n) is the correct critical threshold for the feasibility of quantile shares. For

special classes of valuations such as unit-demand and matroid-rank functions this was

proved in Propositions 6 and 8. Another evidence is that for n = 2 the critical value

is (1 − 1
n)n−1 = 1

2 (see Corollary 1). Below we show that also for n = 3 and low values

of m the critical value is (1 − 1
n)n−1 = 4

9 .

Proposition 10. For n = 3 and for 2 ≤ m ≤ 6 the 4
9-quantile share is the largest

universally feasible quantile share.

The infeasibility of any larger quantile share is stated in Proposition 3. The

feasibility of the 4
9 -quantile share is proved by utilizing the fact that it suffices to

consider 0/1-valuations, and a carefully chosen case analysis.12 The detailed proof is

relegated to Appendix C.

12Such techniques seem to be inapplicable for large values of n and m.
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With the help of a computer-aided exhaustive search (presented in Appendix D),

we have verified the above conjecture for a slightly larger domain of small values of

n and m, as follows.

Proposition 11. For n = 3 and m ≤ 9, and for n = 4,5 and m ≤ 8, the (1 − 1
n)n−1-

quantile share is the largest universally feasible quantile share.

5.2 Comparison of Quantile Shares with Other Notions of

Shares

As mentioned above, the two most extensively studied notions of shares are the max-

imin share and the proportional share. A natural question to study when comparing

these notions of shares is the following: Assume that a bundle is fair towards agent

i with respect to the maximin share. Does this imply that it is also fair with re-

spect to the notion of quantile shares studied here? Or equivalently: Is there a good

lower bound on the quantile of the maximin share?13 Similarly, we can ask the same

question for the proportional share.

5.2.1 Maximin Share

Interestingly, all the feasibility results in the paper (conditional or unconditional on

conjectures) in the case of identical valuations can be equivalently viewed as lower

bounds on the quantile of the maximin share. This is implied by the following general

observation. We denote by τMM(vi, n) the maximin share.

Proposition 12. Let U ⊆ V be a class of valuations. The q-quantile share is feasible

for every profile of n identical valuations in U if and only if the quantile of τMM(u,n)
is at least q for all u ∈ U .

Proof. If the q-quantile share is feasible then for every u ∈ U , an allocation that is

q-fair towards all the agents (having valuation u) witnesses that the quantile of the

maximin share is at least q. Conversely, if the quantile of τMM(u,n) is at least q,

then a partition of [m] into n bundles attaining the maximin value can be viewed as

an allocation that is q-fair towards all the agents (having valuation u).

13No upper bound on the quantile of the maximin share can be bounded away from 1 as n→∞.
For example, if there is a single good to allocate then the maximin share is 0 and its quantile is
1− 1

n
. The same example demonstrates that the quantile of the proportional share might be as high

as 1 − 1
n
.
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Proposition 12 implies in particular that the quantile of the maximin share is

always at least 1
2e assuming the Erdős Matching Conjecture (Theorem 1). More-

over, an unconditional asymptotic lower bound of 0.14
e (respectively, 1

e) is valid for

additive (respectively, unit-demand and matroid-rank) valuations as a corollary to

Proposition 4 (respectively, Propositions 6 and 8).

5.2.2 Fractions of the Maximin Share

As mentioned above, an active research direction has been to derive feasibility results

for fractions of the maximin share in cases where the maximin share is infeasible. Un-

like quantile shares, this direction is hopeless for general valuations (see Appendix A).

In view of the feasibility of constant quantile shares, as opposed to the infeasibility

of high enough fractions of the maximin share, one might hypothesize that quantile

shares are less demanding fairness criteria than fractions of the maximin share. The

following example demonstrates that the above hypothesis is wrong in general; namely

there are (simple) instances in which quantile shares are more demanding fairness

notions than fractions of the maximin share.

Example 3. Consider the case in which many identical goods with value 1 each

(additively) are allocated. For every ϵ > 0 the (1 − ϵ)-maximin share is located at

(1 − ϵ)⌊mn ⌋. On the other hand, by the Central Limit Theorem, for every q > 0 the

q-quantile share is located at m
n −Θq(

√
m
n ).

Namely, for every n ∈ N and ϵ, q > 0, for sufficiently large m, the q-quantile share

notion is more demanding here than the (1 − ϵ)-maximin share.

The above example indicates that the positive results for quantile shares are

derived for general valuations not because quantiles are less demanding, but because

they measure fairness in different units which are arguably more suitable for general

valuations.

5.2.3 1-out-of-d MMS

Beyond multiplicative fractions of the maximin share, another natural method to

relax this share notion is to consider, for each agent i, the maximum value that

the agent can guarantee for itself by partitioning the goods into d > n bundles and

selecting a bundle of minimum value. Unlike fractions of the maximin share, the
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1-out-of-d MMS only depends on each agent’s ordinal ranking over the bundles. It is

known that for additive valuations, 1-out-of-⌊3n2 ⌋ MMS allocations always exist [45],

but the (non-)existence of 1-out-of-(n+1)MMS allocations remains an open problem.

In the above example (Example 3), the 1-out-of-d MMS is located at ⌊md ⌋, which

for d ≥ n + 1 is smaller than the q-quantile share (located at m
n −Θq(

√
m
n )) for suffi-

ciently large m.

5.2.4 Proportional Share

The proportional share makes sense mainly for additive valuations. Its exclusive focus

on the full bundle [m] can hardly be justified outside of this class. For the class of

additive valuations, a lower bound of 0.14(1 − 1
n) on the quantile of the proportional

share follows immediately from Lemma 1.

5.3 Computation

Many of the suggested notions of shares (e.g., the maximin share) in the literature are

hard to compute and hard to approximate for general monotone valuations (see Ap-

pendix A). While computing the exact value of the q-quantile share for a given q may

require exponentially many queries, the probability of getting at most a given value

can be straightforwardly approximated by sampling realizations from the uniformly

random allocation (even for the general class of monotone valuations).

For the classes of additive, unit-demand, and matroid-rank valuations, our proofs

suggest an efficient algorithm for computing a q-fair allocation for the values of q

that admit q-fair allocations. However, the existence of such a poly-time algorithm

for general monotone valuations remains an interesting open problem. In particular,

our proofs for general monotone valuations are not constructive.

5.4 Allocation of Bads

Fair division has been studied not only for the allocation of goods but also for the

allocation of bads (see e.g., [17, 47, 7]); namely, the case where v ∶ 2[m] → R− is

monotonically decreasing. We note that the feasibility of the q-quantile share for

constant q does not extend to the allocation of bads. For example, if a single bad

is allocated (m = 1) then the agent who receives this bad has a quantile of 1
n . One
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can easily show using the arguments of Proposition 2 that in this context the critical

threshold between feasibility and infeasibility is q = 1
n .
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matchings in hypergraphs. Journal of Combinatorial Theory, Series A, 124:

178–194, 2014.

[54] Tomasz  Luczak, Katarzyna Mieczkowska, and Matas Šileikis. On maximal tail
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A Infeasibility and Computational Hardness of Max-

imin Fractions

Example 4. Consider the case of n = 2 agents and m = 4 goods. Let the valuations

be

v1(X) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if X = {1,2} or X = {3,4} or ∣X ∣ ≥ 3

0 otherwise

v2(X) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if X = {1,3} or X = {2,4} or ∣X ∣ ≥ 3

0 otherwise
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Note that the maximin share of both agents is 1. Agent 1 can partition the goods

into {1,2} ⊍ {3,4} and agent 2 can partition the goods into {1,3} ⊍ {2,4}. However,

every allocation of the goods yields a value of 0 for at least one of the agents; i.e., a

0-fraction of its maximin share.

The above example shows that there exist instances with monotone valuations

for which no allocation achieves any positive fraction of the maximin share for all

agents. Furthermore, even in a setting with identical (monotone) valuations, where an

MMS allocation trivially exists, such an allocation is hard even to approximate. This

can be seen, for instance, via a reduction from the NP-complete Partition problem.

In this problem, the input is a multiset S = {s1, . . . , sm} of positive integers (with

r = s1 + . . . + sm), and the task is to decide whether there exists a partition of S

into two submultisets of (equal) sum r
2 . Given an instance of Partition, consider the

valuation function f ∶ 2[m] → {0,1} constructed as follows: f(T ) = 1 if ∑j∈T sj ≥ r
2 ,

and f(T ) = 0 otherwise. Clearly, the function f is monotone and a value oracle can

be implemented for it in polynomial time. Now, for the fair division instance with

two agents having identical valuation functions f , a polynomial-time algorithm that

outputs an α-MMS allocation for any α > 0 necessarily finds a partition of S into two

multisets of sum r
2 if one exists.

B Comparison of the Two Bounds of the Erdős

Matching Conjecture

Lemma 2. For every n ≥ 2, k ≥ 1 and for m = (k + 1)n we have

(m
k
) − (m − n + 1

k
) ≥ (kn − 1

k
).

Proof. After plugging in the value of m and rearranging, the claimed inequality be-

comes:
(kn−1

k
)

(kn+n
k
)
+
(kn+1

k
)

(kn+n
k
)
≤ 1.

The first of these ratios is equal to ∏n
i=0(1− 1

n+ i
k

) and the second one to ∏n
i=2(1− 1

n+ i
k

).
As each of the factors in these products is non-increasing in k, it suffices to verify

that the inequality holds (as an equality) for k = 1.
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C Proof of Proposition 10

It is sufficient to prove the lemma for m = 6 because we can just add dummy goods

for lower values of m. By Proposition 1 we can restrict attention to the case where

the agents’ valuations are 0/1, and every agent has at most 4
936 − 1 = 323 allocations

(among the 36 = 729) possible with 0 value. We shall prove that there exists an

allocation in which every agent gets a 1 value. We consider two cases.

Case 1: There exists an agent i and a good j such that vi({j}) = 1. Without

loss of generality, we assume i = 3 and j = 6. We consider allocations in which agent

3 gets good 6 only. We consider two subcases.

Case 1.1: There exists an agent i′ ∈ {1,2} and a good j′ ∈ [5] such that

vi′({j′}) = 1. Without loss of generality, we assume i′ = 2 and j′ = 5, and we allocate

to agent 2 good 5 only. The remaining goods [4] go to agent 1. We argue that

v1([4]) = 1. Otherwise, agent 1 gets a 0 value whenever S1 ⊆ [4], i.e., in all the
4
936 = 324 allocations that give goods 5 and 6 to agents different from 1, contradicting

our assumption.

Case 1.2: For both agents i′ ∈ {1,2} and all goods j′ ∈ [5] we have vi′({j′}) = 0.

We first argue that agent 2 has at most 6 pairs from [5] with 0 value. Otherwise, the

number of allocations in which agent 2 gets a 0 value is at least 64+5 ⋅32+7 ⋅16 = 336,

where 64 stands for the number of allocations in which agent 2 gets ∅, 5 ⋅ 32 stands

for the number of allocations in which agent 2 gets a singleton from [5], and 7 ⋅ 16

stands for the number of allocations in which agent 2 gets a pair from [5]. Since

336 > 323 this leads to a contradiction.

Second, we argue that agent 1 has at most 3 triples from [5] with 0 value. Assume

by way of contradiction that agent 1 has 4 triples from [5] with 0 value for her. By

the Kruskal-Katona Theorem, since the collection of these triples is of size 4 = (43),
the corresponding collection of pair subsets is of size at least 6 = (42). Therefore, the

number of allocations in which agent 1 gets a 0 value is at least 64+5 ⋅32+6 ⋅16+4 ⋅8 =
352, where 64 stands for the number of allocations in which agent 1 gets ∅, 5 ⋅ 32

stands for the number of allocations in which agent 1 gets a singleton from [5], 6 ⋅ 16

stands for the number of allocations in which agent 1 gets a pair from [5], and 4 ⋅ 8
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stands for the number of allocations in which agent 1 gets a triple from [5]. Since

352 > 323 this leads to a contradiction.

Among the (52) = 10 allocations that allocate a pair from [5] to agent 2 and the

remaining triple to agent 1, there are at most 6 allocations with 0 value for agent

2 and at most 3 allocations with 0 value for agent 1. We are left with at least one

allocation where both agents 1 and 2 have a 1 value.

Case 2: For every agent i and every good j we have vi({j}) = 0. We argue

that every agent has at most 4 pairs of goods with 0 value. Otherwise, the number of

allocations in which the agent gets a 0 value is at least 64+ 6 ⋅ 32+ 5 ⋅ 16 = 336, where

64 stands for the number of allocations in which the agent gets ∅, 6 ⋅ 32 stands for

the number of allocations in which the agent gets a singleton, and 5 ⋅ 16 stands for

the number of allocations in which the agent gets a pair. Since 336 > 323 this leads

to a contradiction.

We consider allocations in which every agent gets a pair of goods. We have

(6
2
)(4

2
) = 15(42) such allocations. Every pair of goods in which an agent gets a 0

value disqualifies (42) of those allocations. So, in total at most 12 ⋅ (42) allocations are

disqualified. We are left with at least (15 − 12)(42) > 0 allocations in which all agents

have a 1 value.

D Computer-Aided Proof of Proposition 11

Here we explain how we carried out a computer-aided exhaustive search that certi-

fied that the critical value for universal feasibility of the q-quantile share is exactly

(1 − 1
n)n−1 for the specified input values of n and m; i.e., the example described in

Proposition 3 is the worst case.

As we showed previously, it is sufficient to consider monotone 0/1-valuations. Note

that in the example in Proposition 3, the agent under consideration has value 1 in

exactly nm−n+1 ⋅ [nn−1 − (n − 1)n−1] allocations, which is the number of allocations in

which that agent receives an item in the set [n−1]. Consequently, our goal is to prove

that if every agent has value 1 in at least nm−n+1 ⋅ [nn−1 − (n − 1)n−1] + 1 allocations

(out of the total nm allocations), then there is an allocation in which every agent

has value 1. Equivalently, there is no instance in which every agent has value 0 in at

most nm−n+1 ⋅ [(n−1)n−1]−1 allocations, but in which none of the allocations satisfies
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every agent.

For specified values of n and m, we prove this statement by solving the follow-

ing integer program using Gurobi, a commercially-available IP solver. The integer

program has a 0/1 variable x(i,S) for every agent i and every subset S of the goods,

indicating the value that agent i has for the set S (therefore the collection of variables

(x(i,S) ∶ i ∈ [n], S ∈ 2[m]) together specify the complete profile of agent valuations).

We then add the following sets of constraints:

• monotonicity constraints, which enforce monotonicity on every agent’s val-

uation; i.e., for each agent i and nonempty set S we add the constraints

x(i,S) ≥ x(i,S′) for all S′ ⊂ S ∶ ∣S′∣ = ∣S∣ − 1;

• a threshold constraint for every agent, which enforces that the number of 0-

valued allocations for that agent is at most nm−n+1 ⋅ [(n − 1)n−1] − 1; and

• an allocation constraint for every allocation, which ensures that some agent is

unhappy, i.e., receives a set of value 0, in that allocation.

The above integer program is computationally tractable for n = 3 and m ≤ 9, and

for n = 4,5 and m ≤ 8. For all of these values, Gurobi reported the infeasibility of

the above program, proving that the critical value is indeed (1 − 1
n)n−1. As a sanity

check, we modified the threshold constraints to increase the threshold by one, that

is, we allowed for the number of 0-valued allocations for each agent to be at most

nm−n+1 ⋅ [(n − 1)n−1]. In each of the above cases, the solver discovered a feasible

solution under the new threshold constraints.
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